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In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy cur-
rents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed
by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite ele-
ment (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model,
the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis
model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents
in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effec-
tively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge
gained from this eddy current model, our next step is to design a passive magnet structure and active
gradient coils to reduce the eddy current effects.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In MRI, the patient is placed in a strong, static magnetic field in
which the hydrogen nuclei within the human body resonate at a
radio-frequency (RF) (Larmor frequency) that is proportional to
the static field strength. Transmission and reception coils operating
at the Larmor radio-frequency are placed near and around the pa-
tient to excite and receive the MR signals from the hydrogen nu-
clei. These signals are spatially encoded by gradient coils and
digitally processed to form MR images. Magnet and gradient coils
are therefore critical field generating devices in MRI.

The permanent magnet (PM) type of MRI system had been
developed because of their advantages of small leakage flux and
low operating cost [1–6]. In a whole-body PM MRI systems, the
magnets are assembled with ferromagnetic materials, such as pole
pieces and the yoke. The gradient coils are generally located close
to the magnet poles and include three independent coils that pro-
duce gradients in the main field along the three Cartesian axes (i.e.
x-, y- and z-coils). During MRI operation, gradient coils are ampli-
tude modulated with a trapezoidal or sinusoidal waveform, with a
usual gradient rise time of several hundred microseconds. The
pulsed gradient currents will induce strong eddy currents in sur-
rounding conducting structures. The magnetic fields caused by
ll rights reserved.
these eddy currents will distort the linear gradient fields produced
by the gradient coils and therefore deteriorate the spatial location
of signal from the sample.

Since the early development of the MRI technology, numerical
modeling has been a useful tool for the analysis of eddy currents
problems in an effort to provide solutions for the minimization
of their effects on MR images. For example, finite-difference
time-domain (FDTD) models [7,8] and numerical hybrid models
(FE method and integration method) [9,10] have been developed
for the analysis of eddy currents in the superconducting MRI
systems. Compared with superconducting MRI systems, the eddy
currents problems in permanent MRI systems are more compli-
cated, this is because the pole pieces and the yoke are made
of soft ferromagnetic materials, which have nonlinear and hys-
teretic properties; that is, the permeability or reluctivity of the
materials vary with both time and location. Each alternate pulse
current will make the operating point of B–H curve of ferromag-
netic materials move on the minor local loop. Numerical meth-
ods [7–10] for superconducting magnet structures are not
straightforwardly applicable to the transient magnetic diffusion
through the ferromagnetic materials. Therefore a dynamic analy-
sis of hysteresis of ferromagnetic materials in a PM MRI system
is essential for the characterization of the transient eddy current
effects and for the effective compensation/control and further
advancement of the imaging system. To model the loop effects,
Miyata et al. [11,12] and Takahashi et al. [13–15] have simulated
the magnetic field at a low field (0.12 T) PM assembly consisting
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of four columns. While the piecewise linear method can some-
times be used to model the hysteresis loop in a steady-state sit-
uation, it is not flexible enough to be used as a generalized
dynamic modeling method [16].

‘High field’ (say �0.5 T or above) PM assemblies for MRI sys-
tems have been developed in recent years. Compared to the low-
field PM MRI device, the residual magnetization of magnets in a
high field PM MRI magnet system is higher, and there exists more
saturated states in the ferromagnetic elements. Moreover, to fur-
ther enhance the strength and uniformity of the main magnetic
field, extra PM material is employed and directions of residual
magnetization are position dependent. These issues require more
complicated mathematical/physical models to enable accurate cal-
culations. There is a lack of depth of investigations on the estab-
lishment of eddy current models for high field PM MRI systems.
In this work, we will construct an FE model for eddy currents mod-
eling of a high field PM system.

Under periodic excitation conditions, the magnetic flux density
B of ferromagnetic material is not a single-valued function of
magnetic field strength H, but is related to the history of magne-
tism state. There are many approaches to describe the hysteresis
characteristics used in industrial applications, in which the classi-
cal Preisach model is especially practical for hysteresis modeling
[17]. This model has been refined for the ease of tracing the mag-
netism and identifying the instantaneous B–H operating point of
nonlinear system and the combination of FEM and Preisach mod-
el has previously been used in the eddy currents analyses for
electrical machine [16,18–22]. Recently, this model has also been
used for the study of characteristics of permanent magnet mate-
rials [23]. The FE method has proven to be an effective numerical
technique to solve electromagnetic field problems, including
model large-scale eddy current problems in electromagnetic engi-
neering [24–29]. In this paper, the eddy currents in pole pieces
Fig. 1. Cross-section of permanent magnet assembly. Magnets are used to generate main
enhance the main magnetic field intensity. There exits a special boundary between two P
in millimeters.
are analyzed using the FE method combined with a scalar Preis-
ach model.

2. Methods

2.1. Model of PM MRI scanner

The electromagnetic system of a PM MRI device includes the
permanent magnet and conducting materials, such as pole pieces,
yoke and pluggings, plugging rings, and gradient coils. Fig. 1 shows
the cross-section of a C-type PM assembly for an MRI device with
vertical static magnetic flux density of 0.5 T, and for the gradient
z-coil, the homogeneous region of the gradient linearity is a diam-
eter sphere volume (DSV) of 40 cm. The yoke is made of steel
(steel-1010), the conductivity of which is 2 � 106 S/m. The pole
piece and plugging ring are made of electrically pure iron (DT4)
whose conductivity is 1.03 � 107 S/m. The NdFeB permanent
magnet, the source of main magnetic field, has a coercivity of
1,034,507 A/m and a relative permeability of 1.0439. The plugging
is also made of NdFeB whose coercivity is 940,045 A/m and relative
permeability is 1.038. The gradient z-coils having 16 turns (shown
in Fig. 2) are located near the surface of the pole piece to generate a
longitudinal gradient field which is excited by a pulse current (see
Fig. 3) and the switching rate of the coils is 0.125 mT/m/A. The
pulse sequence is repeated and only one cycle including ten
trapezoid pulses has been shown in Fig. 3b. In the model, the
cross-section of each current-carrying loop is 6(width) �
3(thick) mm2. The gradient rise time is 500 ls and each pulse is
divided into 100 steps. The time step Dt is small enough to pick
up any rapid temporal change in the source of field. In order to re-
duce the CPU time and memory requirement, the 3D model has
been simplified to a 2D model to enable calculation based on the
axisymmetric of z gradient coils.
magnetic field, the pluggings are used to change the direction of magnetic field and
M materials. The spatial dimensions of the magnet structures have also been shown



Fig. 2. Structure of gradient coils for analysis, the cross-section of each current-
carrying loop is 6(width) � 3(thick) mm2. The coils are located on the plane of
z = ±221 mm and the radius of each loop in unit millimeter is 106, 188, 263, 295,
315, 331, 344, 356, 367, 377, 387, 398, 409, 420, 434 and 451, respectively.

Fig. 3. Pulse current in the z gradient coils. (a) Pulse series, one cycle concludes ten
trapezoid pulses. In order to demonstrate the phenomenon of hystere-
sis and eddy currents effects, the gradient waveform with a large number of zero-
current states is purposely used for this investigation. (b) Enlarged pulse. The time
(marked as number of steps times the time interval) for four periods is
20 � 5 � 10�5 s, 10 � 4 � 10�4 s, 40 � 5 � 10�5 s and 30 � 0.01 s, respectively.

Fig. 4. The equivalent magnetizing current densities of the NdFeB materials. The
locations of the equivalent magnetizing current densities are denoted in thick lines
and the directions are also shown. The arrows show the directions of the residual
magnetization of NdFeB materials in the magnets and the pluggings.
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2.2. Numerical method

2.2.1. Governing equations
The gradient–magnet interactions are governed by the follow-

ing equations:
D� ðmD� AÞ þ r @A
@t ¼ Js

m1
@A
@t jLþ � m2

@A
@n jL� ¼ Jm

(
ð1Þ

where A is the magnetic vector potential, Js is the current density
vector in the gradient coils, m is the reluctivity, r is the conductivity,
Jm is the equivalent magnetizing current density on the line L, the
border of the NdFeB materials and other materials, which is parallel
to the direction of the residual magnetization of the permanent
magnet (shown in Fig. 4), and

Jm ¼
Br

l0
¼ lrHc ð2Þ

In which, Br is the residual magnetization of PM, l0, is the perme-
ability of vacuum, lr, Hc denote the relative permeability and the
coercivity of NdFeB materials, respectively.

Applying the well-known Galerkin FE method [30], a differen-
tial matrix equation can be obtained as follows:

½K�½A� þ ½D�½ _A� ¼ ½f � ð3Þ

where _A denotes the time derivative of A, K and D are the coeffi-
cients matrix, f is the active source vector.

Meshing the domain with triangles, if one numbers the nodes in
counterclockwise manner (see numerals i, j and m in Fig. 5), then
the immediate parameters be
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where xe
h; z

e
hðh ¼ i; j;mÞ denotes the coordinates of the hth node in

the given element.
Then for element e,
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where De is the area of element e.



Fig. 5. Illustration of the finite element e in the model.
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If j, m are on the boundary L, then:

f e
i ¼

JsD
e

3

f e
j ¼

JsD
e

3 þ
JmSi

2

f e
m ¼

JsD
e

3 þ
JmSi

2

8>><
>>: ð6Þ

where Si is the length of the line jm.
Using a time-stepping method and backward difference meth-

od, we have:

@A
@t

� �tþDt

¼ ½A�
tþDt � ½A�t

Dt
ð7Þ

Eq. (3) is then expressed as:

½K�tþDt þ 1
Dt
½D�

� �
½A�tþDt ¼ ½f �tþDt þ 1

Dt
½D�½A�t ð8Þ
2.2.2. Hysteresis model
During gradient switching, the operating point on the B–H curve

of the ferromagnetic material will move on the limiting loops or on
the local hysteresis loops (as shown in Fig. 6). The magnetization
curve has n local extrema, that is, reversal points. The magnetic
flux density on a downward trajectory and upward trajectory can
be calculated by the refined scalar Preisach model proposed by
Hui and Zhu [16], respectively, that is on downward trajectory:
Fig. 6. Local minor loop and limiting hysteresis loops of ferromagnetic material.
The limiting hysteresis loop is symmetrical about the base point of the coordinate
axis.
BðHÞ ¼ BðHnÞ � 2TðHn;HÞ ð9Þ

and on upward trajectory

BðHÞ ¼ BðHnÞ þ 2TðH;HnÞ ð10Þ

where Hn is the magnetic intensity of nth reversal point. The func-
tion T(a, b) is given as:

Tða;bÞ ¼ BuðaÞ � BdðbÞ
2

þ FðaÞFð�bÞ ð11Þ

In which, the function F(a) is expressed as

FðaÞ ¼ BdðaÞ � Buð�aÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
BdðaÞ

p ða P 0Þ ð12Þ

and

FðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bdð�aÞ

p
ða < 0Þ ð13Þ

where �Hs 6 b 6 a 6 Hs, Hs is the saturation magnetic field
strength, a and b are the threshold values of magnetic intensity
on the Preisach magnetic dipoles, Bu and Bd, the only predefined
data in Preisach model, are the values of the magnetic flux density
on the up and down trajectory of limiting hysteresis loop, respec-
tively.On the initial magnetization curve, the magnetic flux density
Bi is written as:

BiðHÞ ¼ ½Fð�HÞ � FðHÞ�2 ð14Þ

Initially, the operating point of B–H curve moves on the initial mag-
netization curve; at each transient time step, magnetic field
strength H is iteratively given by

Hkþ1 ¼ Hk þxðH0k � HkÞ ð15Þ

where k denotes the kth iteration, H0k is the magnetic intensity ac-
quired from Preisach model, x is the relaxation factor (0 < x < 1)
and 0.5 is used in this case. The criterion of convergence is given as:

PNE

e¼1
HðeÞkþ1 � HðeÞk

��� ���
PNE

e¼1
HðeÞkþ1

��� ��� < e ð16Þ

where e is element number and NE is the total number of elements,
and e is the specified tolerance.

2.2.3. Preisach model implementation
The Preisach model can be easily implemented and the flow

chart of the modeling process has been illustrated in Fig. 7.
A stack is designed to keep the B,H values of each reversal point.

Before the simulation starts, the stack is initialized to zero. The
stack content is updated according to the current H field value: If
the H value decreases, the large value in the stack will be replaced
by the current H value; if the H value increases, the small value in
the stack will be replaced by the current H value. The temporal
reversal points will be eliminated from a completed minor loop,
since they will not have any effect on the future state of magneti-
zation [16].

3. Results

3.1. Main magnetic flux lines and gradient magnetic flux lines

Fig. 8a shows the distribution of main magnetic flux lines pro-
duced by permanent magnet. It is noted that the z component of
magnetic flux density (Bz) at the DSV is about 0.50 T. Fig. 8b illus-
trates the equi-potential lines of the gradient magnetic field at the
transient 211th time step (any time point can be selected except
the zero current time point. In order to illustrate the variation of



Fig. 7. Flow chart of the Preisach model.

Fig. 8. Magnetic flux lines of the main magnetic field and equi-potential lines of gradient magnetic field. (a) Main magnetic field generated by PM materials. (b) Field
produced only by gradient currents at the 211th time step. The pole pieces and plugging rings are near to the gradient coils and a higher magnetic flux density will be
generated under a relatively low external magnetic field in electrically pure iron, so only the hysteresis of pole pieces and plugging rings are taking into account in the process.
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the magnetic field clearly, the 211th time step is selected). It can be
seen the gradient currents mainly electromagnetically affect the
pole pieces, and therefore the hysteresis in the yoke is not consid-
ered in this work.
3.2. Magnetic flux density in DSV

Fig. 9 shows the time variation of the original field and the sec-
ondary fields Bz at the sampling point S(x = 0, z = 0), which is the
isocentre of the DSV. To illustrate the variation of the magnetic
field due to eddy current distortions, we considered those time
points without zero-currents, such as the time step 211th, which
is close to the situation that the current reaches its maximum.
The abscissa denotes the time step. It is clear that eddy currents
have decreased the flux density, and more importantly, the time
that the magnetic intensity reaches the maximum has been de-
layed, so the desired fast rise of the gradient magnetic field will
be slowed.

Fig. 10 compared the ideal (a) and real (b) gradient field distri-
bution in the DSV (an area of 0.4 � 0.4 m2 is shown) at the 211th
time step. It is seen that the proposed model can clearly predict
that eddy currents damage the linearity of gradient field in the
imaging region.

3.3. Residual flux density

DB The change of residual magnetic flux intensity DB at point
P(x = 0.30 m, z = 0.25 m) in the pole piece labeled in Fig. 1 is calcu-
lated and shown in Fig. 11 (a). The definition of DB is given as

DB ¼ Bzk
� Bz0P ð17Þ

where Bzk
is the z component of the flux density at the instant r,

s,. . ., when the current becomes zero after the impression of the



Fig. 9. Change of magnetic flux density with time (point S in DSV). (a) The thin line indicates the instantaneous original field without considering eddy currents, the broad line
indicates the temporal magnetic flux intensity with eddy currents. (b) Secondary magnetic flux density generated by eddy currents with time. It is shown that the secondary
field is opposite to the original field and suppresses the change of gradient field.

Fig. 10. The Bz distribution in the DSV. (a) The field of Bz generated by gradient
currents without considering the eddy currents and a good linearity is shown in the
DSV. (b) The field of Bz with eddy currents. It is shown that the eddy currents
degrade the amplitude of the field and destroy the gradient magnetic intensity.

Fig. 11. Change of residual flux density DB. (a) At the point P in the pole piece. (b)
At the point S in the DSV. The abscissa denotes the input currents of gradient pulse,
and the field changes including eddy current effects at the time after the gradient
transition are calculated. The circled numbers in this figure correspond to the
timing of the circled numbers shown in Fig. 4.
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kth pulse current (shown in Fig. 3), Bz0P is the z component of the
flux density of point P at the instant t = 0 (I = 0 A). Obviously, DB
is always equal to zero if there is no eddy current and no hysteresis.

The phenomenon of residual magnetic fields in the DSV is sim-
ilar to that in the pole pieces, and the DB at point S in the DSV (la-
beled in Fig. 1) is shown in Fig. 11b. From Fig. 9, it can be seen that
DB does not reach steady state until the eighteen pulses (about two
periods) due to eddy currents and hysteresis.
4. Discussion

In high field PM MRI devices, the nonlinearity and hysteresis of
the soft ferromagnetic materials are larger than the lower field
cases, therefore the eddy currents problems are more complicated.
Based on the Preisach hysteresis model, our FE model can analyze
the large nonlinear eddy current problem of C-type PM MRI assem-
bly with the inclusion of minor loops of soft ferromagnetic materi-
als. With this model, the behavior of residual magnetic fields, in the
pole pieces, caused by the hysteresis characteristics of ferromag-
netic materials has been investigated. The actual gradient fields
in PM MRI systems are influenced by the eddy currents and also
the hysteresis characteristics of ferromagnetic materials. This
information will be valuable for the design of compensation boards



Table 1
Discretization data and CPU time (on a computer with: inter(R) core(TM)2 quad CPU
Q6600 at 2.40 GHz).

Without eddy current With eddy current

Number of elements 11,573
Number of nodes 5863
Number of time steps 1000 3501
CPU time (h) 0.4 6.0
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for eddy currents in high field PM MRI systems. The passive shield
board is usually made of silicon steel sheet, which has high, aniso-
tropic permeability and resistance. The FEM model was developed
for the analysis of laminated structure. The thickness of the eddy
current board was determined by the consideration of the shield-
ing effect and also practical space limits, and then verified using
FE analysis. A fully automatic FEM-based optimization procedure
is not used in this study due to high computational cost. We sug-
gest that the optimal solution for eddy current management in per-
manent MRI system will be the combined technique, that is active
shielding and passive shielding.

4.1. Advantages of the Preisach model

In previous similar work [9–12], the upper part of minor loop is
modeled using the measured several hysteresis curves of ferro-
magnetic materials and which is approximated by a cubic spline
function. System errors will occur due to a linear interpolation
approximation. Furthermore, the lower part of the minor loop is
mirrored from the upper part with a symmetry assumption. The
error introduced from this approximation is negligible only if the
amplitude of the minor loop is small enough. The preisach method
does need to use linear interpolation to obtain Bu and Bd and this
will introduce interpolation errors. But these errors are much
smaller compared to previous models, which require several mea-
sured hysteresis curves and interpolations, usually involving large
measurement and interpolation assumption errors [14]. In the Pre-
isach model, the model data required is only for the limiting B–H
loop, in which the measurement error is relatively small [16]. Com-
paratively, the Preisach model is more accurate, more flexible to
identify the B–H operating point of the nonlinear materials and
can be implemented straightforwardly within the FEM framework.

4.2. FE mesh grid

Mesh grid quality is very important for FEM analysis. To prop-
erly model eddy currents, the permanent magnet materials must
be modeled with fine mesh structures, because rough mesh struc-
tures will introduce large computational errors in modeling of the
minor loop. Fig. 12 demonstrates the employed mesh grid and
Table 1 shows the discretization data and CPU time in the calculat-
ing process. As expected, the calculation time in the case of eddy
currents is much more than that without considering the eddy cur-
rents. It is noted that for the current 2D FE analysis, the calculation
Fig. 12. Mesh grid of the solved region. The yoke is not a closed magnetic circuit
and the right part of the magnet body is open to the air, so the air in the vicinity of
right part of magnet body is included to analyze the eddy current problem.
time is mainly determined by the nonlinear iteration of permeabil-
ity instead of the mesh size. However, for the full 3D analysis, the
mesh size will significantly influence the solution and the selection
of which will be a trade-off between accuracy and computational
cost.

4.3. Time interval Dt

The interval Dt is also an important parameter for the calcula-
tion of nonlinear eddy currents. When Dt is too large, the change
of instantaneous fields will not be reflected during gradient
switching. Initially, the time interval is determined in the light of
that in reference [11], then adjusted with the investigated mag-
netic field variations. In this work, in the rapid changing portions
around gradient transitions, a small time interval is employed,
while in slower transition periods a larger time interval is used.
Other advanced temporal discretization schemes, such as the New-
mark-beta method (http://en.wikipedia.org/wiki/Newmark-beta-
method), can be used to improve the numerical performance of
the proposed FE model.

4.4. Residual flux density DB

The major cause for the residual flux density is the hysteresis
characteristics of the ferromagnetic pole pieces and the variation
of DB is nonlinearly following the slow-decaying eddy currents,
for the worst case shown here, it took about 18 pulses to reach
steady state. In practical cases, the steady state can be reached ear-
lier due to non-perfect conducting environment. The change of DB
is larger when eddy currents become larger.

5. Conclusion

In this paper, an FE analysis of nonlinear eddy current problems
for a 0.5 T permanent magnet-type MRI system has been pre-
sented. Based on the Preisach model, the hysteretic characteristics
of soft ferromagnetic materials have been taken into account, and
it has been shown that the change of residual flux intensity occurs
because of the minor loop of electrically pure iron. The transient,
eddy current distorted gradient field can be effectively modeled.
With this model available, it is possible to optimally design novel
eddy current compensation shields using laminated structures
(such as anisotropic Fe–Si) and to improve the gradient coil design
so as to minimize eddy current generation.
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